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The recent emphasis on understanding the myriad roles of zinc
in both normal and diseased cells and tissues1 has placed an ever
increasing demand on methods for sensitive and selective methods
for real-time monitoring of free Zn2+ in complex biological
samples. Chelation-enhanced fluorescent sensors for zinc, based
on fluorophores such as quinoline,2 dansyl,3 fluorescein,4 and
anthracene,5 have been reported. While each of these agents has
unique advantages, there remain issues with sensitivity, selectivity,
and specificity that may be addressable with an alternate chro-
mophore that is readily amenable to synthetic manipulation.
Herein we report the systematic chemical modification of the
8-hydroxy-2-methylquinoline (Oxn) unit as a building block for
the development of new sensors employing chelation-enhanced
fluorescence. In particular, improvements in quantum yield from
0.004 to 0.70 and stepwise blue shifts in fluorescence emission
wavelengths (to a total of over 70 nm) are reported.

A selection of substituted quinoline derivatives bearing the
electron-withdrawing nitro, sulfonic acid, and sulfonamide sub-
stituents (1-9) were prepared and screened for fluorescence
response to Zn2+ under pseudobiological conditions.6 Derivatives
1-6 were prepared by previously described methods.7 The new
sulfonamide derivatives,7-9, were prepared by simple two-step

procedures involving the preparation of the corresponding sulfonyl
chloride derivatives using chlorosulfonic acid,8 followed by
addition of these intermediates to excess amine in THF.

Chemical substitution dramatically influenced the efficiency
of both the absorption and emission properties of the Oxn
derivatives. Table 1 lists relevant extinction coefficients and
quantum yields of the fluorescent Zn2+-bound derivatives.
Substitution of nitro groups on the Oxn core resulted in
significantly less fluorescent complexes with Zn2+; complexes
of 2 are weakly fluorescent, and those of3 and6 exhibited no
measurable fluorescence in neutral solution. By contrast, deriva-
tization with sulfonic acid or sulfonamide groups resulted in
dramatically enhanced fluorescence properties. The improvement
in quantum yield of the sulfonamide derivatives is particularly
striking; that of8 is 175 times greater than that of1. Although
the excitation maxima for the compounds remained essentially
unchanged, the emission wavelengths of the Zn2+-bound deriva-
tives were blue shifted compared to that from Zn2+-bound1. The
extent of blue shift was dependent on both the type (sulfonamide
derivatives were more blue shifted than sulfonic acid derivatives)
and degree (5,7-disubstituted derivatives were more blue shifted
than 5-subsituted derivatives) of substitution (Figure 1a).9

Fluorescence emission properties may be compared using a
sensitivity index based on the product of the quantum yield and
the extinction coefficient atλex. A complete survey of the zinc
complexes (Figure 1b) reveals the additive effect of substitution
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Table 1. Relevant Spectroscopic Data for Oxn Derivatives that
Form Fluorescent Complexes with Zn2+

derivative λex, nm λem, nm ε,a cm-1 M-1 φa,b

1 353 533 2286 0.004
2 425 460 14200 <0.001
4 355 515 3796 0.058
5 356 493 3433 0.33
7 354 499 5563 0.24
8 353 464 4564 0.70
9 369 465 4826 0.44

10 369 535 6061 0.10

a Spectra acquired in 150 mM NaCl, 50 mM HEPES, pH 7.01, 25
°C, with 1.00µM 1-10 and 0.5-1.0 mM ZnCl2. b Excitation of all
species provided atλmax (355-425 nm), 5 nm slit widths. Quantum
yields were calculated with reference to a quinine sulfate standard.10
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around the Oxn core on the fluorescence signal from the resulting
zinc complexes. The sensitivity of the compounds presented in
this study is compared with that of 6-methoxy-8-(p-toluene-
sulfonamido)quinoline (TSQ),10, a well characterized intra-
cellular, biochemical, and analytical fluorescence indicator for
zinc that exhibits spectroscopic properties representative of a class
of 8-(p-toluenesulfonamido)quinoline indicators, including Zin-
quin.2,11 The sensitivity indices of derivatives5, 7, and8 were
superior to those of10, indicating that sensors prepared using
these species might provide a useful fluorescence signal on
binding Zn2+ in biological or near-neutral environmental samples.12

The quantum yield of the fluorophores is the result of contribu-
tions from a number of sources, including molecular dipole,
resonance structures, and solvent-fluorophore interactions, and
further study will be required to describe the cumulative nature
of these contributions.

To examine whether sulfonamide derivatives such as7 and8
would, in fact, prove useful components of zinc chemosensors,
the more hydrophobic derivative9 was prepared for intracellular
experiments.13 Fluorescent labeling of mouse fibroblasts (NIH/
3T3) occurred after incubating the cells with9 (Figure 2a). The
fluorescence within the cell is nonuniform; some regions appear

considerably brighter than the surrounding cellular material
(Figure 2b). Recent reports have described similar “punctate”
staining with other fluorescent staining agents for intracellular
Zn2+ in fibroblast cell lines and attributed this feature to the
existence of intracellular vesicles containing elevated concentra-
tions of Zn2+.2c,d It is likely that the nonuniform staining of cells
by 9 results from a similar intracellular distribution of Zn2+. The
punctate fluorescence staining was reversed on incubation with
20µM (N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN),
a membrane permeable metal chelating agent,2d and not reversed
by incubation with 20µM EDTA (which does not transport
through the cell membrane).2c Consequently, the observed fluo-
rescence from9 can be said to result from metal-bound probe
located within the cell.

In summary, the quantum yields of new derivatives7-9, when
complexed to Zn2+ in pseudobiological conditions, are superior
to quinoline derived probes reported in the literature. The affinity
of these simple species for zinc may make them useful probes of
cellular events associated with elevated zinc levels.2b,14Moreover,
these new derivatives are very good candidates for subsequent
incorporation into sensor designs with an extended superstructure15

for sensitive and selective detection of zinc in biological and
environmental applications, studies of which are in progress.
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Figure 1. (a) Blue shift in normalized fluorescence emission spectra of
4, 5, 7, and8 compared to that of1. The baseline spectrum is that of8
in the absence of zinc. (b) Sensitivity index of Zn2+-bound Oxn
derivatives, compared to Zn2+-bound TSQ. Data are normalized relative
to the parent Oxn,1 (1.00). Experimental conditions are described in
Table 1.

Figure 2. Fluorescence microscope images of NIH/3T3 mouse fibroblasts
labeled with9 in metal free Hank’s balanced salt solution. (a) Wide field
view of cells loaded with9 (all cells take up the ligand). (b) Image
acquired at higher magnification of cells showing nonuniform “punctate”
patterning of intracellular fluorescence following incubation with9 (10
µM, 45 min, 21°C).
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